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SUMMARY 

Two methods of obtaining the necessary optimum combination of 

design parameters for a lightly loaded^ single rotation shrouded pro- 

peller are described for the case in which the ultimate wake vortex 

pattern moves as a rigid body and is composed of helical vortex fila- 

ments of equal geometric pitch.  One method employs the electrical poten- 

tial tank techniques while the other uses a digital computer to numeri- 

cally integrate the Biot-Savart relation.  The use of both methods to 

determine the optimum blade bound vortex distribution for a two-bladed 

shrouded'propeller whose ultimate wake helical vortex filaments have a 

geometric pitch of 1.356 and the assumed geometric configuration was 

investigated.  In addition,, the distribution for a fcur-bladed shrouded 

propeller, having the same wake geometric pitch, was determined by the 

potential tank method.  An outline of the use of the data so obtained in 

designing an optimum propeller is presented. 

The theoretical analysis of a heavily loaded shrouded or free 

propeller having an infinite -nttiaber- of blades Is gtvea—In an-append ' 



INTRODUCTION 

It vas established In Reference 1 by A. Betz that the optimum free 

propeller (i.e. an isolated propeller having the highest possible kinetic 

or induced efficiency) is characterized by an ultimate wake vortex system, 

whose motion through the fluid medium is as if the wake vortex sheets 

formed a rigid screwlike structure of uniform pitch.  It is possible to 

determine the necessary radial distribution of the wake vortex sheet 

strength for such a system and this has been done, initially for the 

lightly loaded two and four-bladed propeller by S. Goldstein in Reference 

2)   and later for propellers having various numbers of blades and for the 

range of wake helix angles of interest by T. Theodorsen in Reference 3- 

In considering the comparable ultimate wake vortex system for the 

optimum, lightly loaded, shrouded propeller, the same arguments and con- 

siderations hold as to the pitch and movement of the vortex sheet that is 

shed from the blade trailing edge; that is, the pitch of the vortex sheet 

must be constant and the sheet must appear to move as a rigid structure. 

However, there is an additional boundary condition which requires that 

the flow at the trailing edge of the shroud be tangent to the shroud mean 

camber surface at this point or in other words, the Kutta condition for 

the shroud trailing edge must be satisfied.  For this to occur, a sheet 

of vorticity must be shed from the shroud trailing edge.  If it is 

assumed that the shroud is "long enough" for the wake to have reached its 

ultimate configuration at the shroud trailing edge, then this boundary 

vortex sheet consists of helical vortex filaments wrapped on a right cir- 

cular cylinder. Thus, for the lightly loaded case, the vortex filaments 

in the outer boundary sheet and in the inner helical sheet have the same 

geometric pitch and satisfy the necessary conditions imposed.  The geome- 

try of this ultimate wake vortex system is discussed in greater detail in 

Appendix I. 

Once the geometry of the wake vortex system has been thus defined, 

the determination of the vortex strengths becomes a relatively straight- 

forward process.  Two such methods will be discussed In this report.  The 



.. 
first is modeled after the potential tank techniques developed "by T. 

Theodorsen in Reference 3.  The second is a numerical evaluation of the 

Biot-Savart integral by means of a digital computer. 

The potential tank approach is based on the well-known analogue 

between the velocity potential of a perfect fluid flow and the electrical 

potential of a uniformly conducting medium.  For the case under considera- 

tion^ the differential velocity-potential-equation for the flow field 

associated with the vortex sheets is identical^ after a change in 

variable,, with the differential electrical-potential-equation for the 

field in the potential tank that is associated with sheets of insulating 

material of the same geometry as the vortex sheets. An exposition of the 

potential tank techniques in presented in Reference k.     The determination 

of the necessary propeller parameters thus can be determined from the 

measurement of the corresponding electrical potential in the conducting 

medium with the transformed boundary conditions. 

The approach using the classical vortex theory is also well- 

established.  In this instance^ the vortex sheets are approximated by a 

number of finite strength vortex filaments.  The Biot-Savart integral is 

then numerically integrated for the velocity components induced by each 

filament at each calculating point with the strength of the filament 

being initially unspecified.  The vortex filament strengths are then 

determined by a simultaneous solution of the resulting equations using 

the necessary restraints and boundary conditions. 

A discussion of each of these approaches follows. 



NOTATION 

A       element of area under curve of shroud bound vortex distribution n 

versus distance along shroud 

b       number of blades 

c       blade chord 

C      blade airfoil sectional profile drag coefficient d 

Cn      shroud drag coefficient based on wake cross-sectional area 

:       blade airfoil sectional lift coefficient 

power coefficient based on wake cross-sectional area,  c= + e 

increment to power coefficient due to profile dra pd 

total power coefficient.  c + c 
'T P   Pd 

c 

c 
p 

c 

c 
p 

c 
s 

c 
sd 

c 

s 

thrust coefficient based on wake cross-sectional area  —? 
2 1 r\ l-„2 

increment to thrust coefficient due to profile drag 

s      net thrust coefficient,  c  - c 
T s   s, 

d 
induced energy loss coefficient based on wake cross-sectional 
area. 

E induced energy loss per unit time in the wake 

F ultimate wake cross-sectional area 

H geometric pitch of ultimate wake helix 

k shroud bound vortex proportionality constant 

K(x) circulation function for single rotation,  7^—77;: r— 
s   ' '    2Tr{Y00    +  wjw 

axial distance between successive vortex sheets,  — 
b 

lift per unit span,  pVT 

number of vortex filaments used in approximating wake vortex 
system 



p 

p' 

p» 

r 

r' 

R 

R 
o 

ds' 

dS 

dS' 

t 

T 

AT 

v 
w 

/3 

/IT 

local static pressure 

static pressure in disturbed  fluid with respect to fixed 

co-ordinates 

static pressure in free stream 

increment in torque due to addition or removal of vortex 

element AV 

blade radial station or radial location of calculating point 

radius of vortex filament 

propeller radius 

ultimate wake radius 

element of length of vortex filament 

element of area of control surface 

element of area of vortex sheet surface 

time 

thrust 

element of thrust due to addition or removal of vortex element AV 

unit sink strength 

non-dimensional blade station or location of calculating 
r   r 

point,  - ,  — 
o 

non-dimensional radius of vortex filament- 

axial location of vortex filament 

angle defined in the Biot-Savart relation 

unit strength of assumed wake boundary vortex sheet 

blade bound vortex distribution or function of r 

wake boundary vortex sheet strength 

strength of n— shroud bound vortex ring 

element of bound vorticity added or removed 
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y 

e 
F 

& 

f 
i 

9 

?o 

0. 
-t 
-r 

■f- 

-f- 
"T.E.Cr1 .z') 

axial loss factor 

efficiency net thrust to power input ratio 

ideal efficiency 

control surface co-ordinate 

strength of vortex filament 

mass coefficient or total induced velocity loss factor 

tangent of helix angle of outermost radia,! vortex filament in 

the ultimate vake,  tan <p 
' o 

density of incompressible fluid medium 

distance from vortex element ds!  to calculating point 

blade solidity^  p  

pitch angle of vortex sheet 

pitch angle of vortex filament 

pitch angle of outermost radial vortex filament in the ultimate 

wake 

total velocity potential 

induced velocity potential 

azimuth location of blade bound vortex or calculating point 

azimuth location of vortex element ds' 

stream function associated with shroud bound vortex system 

non-dimensional stream function associated with vortex ring 

stream function at shroud trailing edge due to a shroud 

T.E. 

ir. 

bound vortex ring 

total volume of flow or total stream function 

total stream function or total volume flow required through 

shroud trailing disk area 

stream function associated with the free stream velocity 



I stream function associated with the assumed uniform cylindrical 
w 

wake vortex sheet 

x       non-dimensional stream function associated with the uniform sink 
w 

strength distribution 

Co-ordinate Systems 

x^ jf   z Cartesian co-ordinate system fixed in space 

x', y', z1    Cartesian co-ordinate system fixed in vortex pattern, 
m  m  ra 

x, y, z and x', y1, z'  are considered to he coincident 
'        m m'    m 

for the analysis 

T,   r ,   z  Cylindrical co-ordinate system corresponding to x', y', z1 

space 

r;J",5  helical co-ordinate system (Figure ll) 

Velocities 

^/i^^t    induced velocity components parallel to x^ y,   z  axes respec- 

tively 

&u* ^f) ^i   increments in induced velocity associated with m— vortex 

filament 

Urji^M^  induced velocity components parallel to helical co-ordinates 

t 

V 

V. 

induced velocity at and parallel to the wake axis 

tangential induced velocity component 

total induced velocity 

time average axial component of velocity in ultimate wake 

total velocity 

induced velocity 

free stream velocity or propeller-shroud velocity along flight 

path ., 



w 

Wr- 

-O- 

induced axial inflow velocity at propeller plane 

parameter describing the apparent axial motion of the wake 

vortex system 

7/V \ 

parameter describing the apparent axial motion of the wake 

boundary vortex system 

angular velocity of the blades 

Subscripts 

m denotes particular vortex filament 

R denotes quantity at wake boundary 

R denotes quantity just Inside wake boundary 

R denotes quantity just outside of wake boundary 

p denotes quantity at propeller blade axis or plane 

: . 



POTENTIAL TMK METHOD 

Apparatus 

The geometry of the models was determined from the analysis given 

in Appendix I.  Thus^ the vake vortex system wa.s considered to he com- 

posed of an inner helical sheet of vortex filaments of constant geometric 

pitch and an outer sheet of helical vortex filaments of constant pitch 

wrapped on a right circular cylinder^ the pitch of the outer filaments 

being equal to that of the outermost filament of the inner helical sheet. 

The electrical potential analogue of this system was obtained by con- 

structing a physical model of the vortex pattern from, an insulating 

material.  Then the analogue of the outer cylindrical sheet is simply an 

insulated right circular cylinder and the analogue of the inner sheet is , 

a helical sheet of constant geometric pitch formed from an Insulating 

material.  In this particular case, the model also becomes the potential 

tank by the addition of conducting end plates mounted at right angles to 

the axis of the cylinder. 

A commercially available acrylic ti six mcne In diameter and 

about 53 inches long with a. one-eighth inch wall, was used for the outer 

cylinder.  The inner helical sheet was formed from 0.02-inch thick cellu- 

lose acetate sheet which is also available commercially.  A description 

of the method of forming the plastic helices fellows. 

Several different combinations of heating baths, dies, materials, 

sheet thicknesses, and forming methods were investigated or tried with 

varying degrees of success.  During the early attempts, the plastic 

material was completely immersed in a quenching-type oil bath which was 

heated electrically and 'maintained at a constant temperature by thermo- 

stat controls.  Several simple forming dies were tried.  The first one 

was a simple slot cut in one-eighth inch thick aluminum sheet.  This die 

was mounted at the surface of the heated oil and the plastic sheet of the 

proper width was pulled through the die with a twisting motion.  The 

results of this operation were so poor that this method was immediately 



discontinued.  The next apparatus consisted of two one-eighth inch dia- 

meter steel rollers mounted above the oil bath;, one set being displaced 

spirally from the other set to yield the desired helix angle.  Very good 

results were obtained at the edges of the helix., but the center of the 

helix "fas excessively wrinkled when the sheet was pulled through the 

rollers with a twisting motion.  Some time was spent in experimenting 

with oil bath temperature,, air blast cooling^ and pre-loading the rollers> 

but these wrinkles could not be eliminated.  For the next step, a die was 

constricted having a spiral slot of the proper pitch and width. When the 

sheet was pulled through this die,, a. satisfactory helix was obtained for 

about one-quarter to one-half turn, but the plastic sheet would then 

buckle and-the remainder of the sheet was unusable.  Additional supports 

were provided by rollers and the plastic was cooled by the vapor from 

liquid carbon dioxide.  Different sheet thicknesses and materials were 

tried as follows:  in cellulose acetate,, 0.02", 0.03", O.OU", 0.06".? in 

cellulose acetate butyrate, 0.015"; and in cast acrylic, one-sixteenth 

inch sheet which was the thinest available locally.  Of these, the 0.02" 

thick cellulose acetate yielded the best results so that further efforts 

were restricted to this material and thickness. 

Additional experimentation showed that better results were obtained 

if the plastic sheet was not soaked in the heated oil bath for an appreci- 

able nength of time.  Consequently, the drum, of hot oil was replaced by a 

shallow pan of heated oil through which the plastic sheet was pulled Just 

prior to its entering the die.  During this experimental phase, a silicone 

release agent was added to the quenching oil in a one part release agent 

to about sixteen parts of oil by volume, which seemed to aid the forming 

operation.  It was subsequently discovered that, the roller supports,, the 

cooling, and the forced twisting motion which was mechanically imparted 

to the sheet were unnecessary. A photograph of the forming apparatus in 

its final configuration is presented as Figure 1. 

The drawing mechanism consisted of a fully swiveling clamp mounted 

on a carriage which ran on and was positioned by a set of vertical tracks. 

The motive power was provided by a hand operated winch not shown in the 

photograph. 

10 
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The construction of the four-bladed model proved to he much more 

difficult.  Two helices of the same  geometric pitch were chosen and one 

of these was cut along its centerline.  These two half helices were 

cemented one to a side of the second helix along Its centerline thereby 

forming two helical sheets which intersected at right angles.  This part 

of the construction was successfully completed.  However, when the 

helices were inserted into the 53-inch long acrylic tube, it was found 

that slight inaccuracies in joining the two sheets resulted in unaccept- 

able deformations in the helices when inserted in the tube.  For this 

12 

The die is shown in Figure 2.  It was constructed of wood and each 

half was mounted on a wooden base plate. The one and one-half inch thick 

base plates when clamped together also acted as guides to the plastic 

sheet.  A one and three-eighths inch diameter wooded roller was mounted 

on the underside of one base plate to act not only as a guide but to 

insure that the plastic sheet was completely immersed in the oil.  The 

dimensions of the die did not appear to be critical.  In this ease, the 

die was constructed from a piece of Honduras mahogany one and one-eighth 

inches thick and had a geometric pitch of about three-fifths the desired 

geometric pitch. 

The forming operation as described below resulted in about one 

usable helix for every three tries.  The oil bath was maintained at 315°^ 

+ 2°F.     A sheet of clear cellulose acetate 5.75 inches by eight feet long 

by 0.02 inches thick was clamped to the swivel on the carriage.  The 

carriage was lowered to the die surface and a fold of the plastic sheet 

was immersed in the hot oil. When the sheet had become soft, the carriage 

was raised and the die was clamped shut about the softened portion.  The 

carriage was then steadily raised at about two to three inches per minute 

thereby drawing the plastic sheet through the die.  It was found that, 

when conditions were right, an almost perfect helix was obtained.  The 

helix used in the construction of the two-bladed model is shown in Figure 

3- 
The construction of the two-bladed model was relatively simple. 

The helical sheet was inserted into the six-inch diameter acrylic tube 

and a bead of glue was laid along the contact lines.  This model is shown 

in Figure 4. 



Figure 2. Die Used in Helix Forming Operation. 
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Figure 3 . Cellulose Acetate Helix Used in Construction of 
Two-Bladed Wake Model. 
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reason and in view of the results that had been obtained on the two- 

bladed model;, it was decided to simplify the design of this model and to 

construct only one of the spiral flutes.  In the construction^ a spiral 

quarter section was cut from the acrylic tube.  One of the helical sheets 

was cut along its axis, glued together again along this same axis but so 

as to form a right angle; and then the resulting form was cemented to the 

inside of the remaining three-quarter section of the tube thus forming 

one of the spiral flutes of the four-bladed propeller wake model.  This 

resulted in a much more accurate model than could have been obtained in 

the original construction as all of the glue lines were readily accesible 

for gluing and clamping in place.  The potential tank model of the four- 

bladed propeller wake is shown, in Figure 5- 

For a reason to be given later, a two-foot section of tube was added 

to either end of the wake models when the measurements were made.  The 

electrodes were placed at the ends of these additions.  A sketch of the 

resulting potential tank apparatus is given in Figure 6. 

The probe with which the measurements were taken was constructed 

of 0.1-inch glass tubing with a O.OlO-inch diameter platinum wire con- 

ductor.  Details of the probe are shown in Figures 7 & 8.  The potential 

readings were obtained in decibels from a standing wave indicator. 

The power supply was a ^-OO-cycle aircraft generator driven by a 

synchronous motor through a timing-belt drive.  A schematic wiring dia- 

gram of the electrical system is given in Figure 9" 

Experimental Procedures 

After the model construction was completed, the models were checked 

for leaks by running a small amount of mineral spirits along the glue 

lines.  When the leaks so determined had been stopped, one end of the two- 

bladed model was sealed, the model was filled with tap water, and the 

resistance between the two sides was determined by running a wire probe 

simultaneously down each side of a glue line. At all points, the mea- 
7 surement was of the order of 10 ohms, so it. was assumed that the elec- 

trical leakage would be negligible.  Since there was only one flute in 

the four-bladed model this latter test was not necessary. 

The measurements were first made on the two-bladed wake model. 

The two end tubes containing the electrodes were connected to the wake 

16 
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Conducting End Plates 
Hellx- 

-6" Dia. Acrylic Tube 

21+"- 52" - 

100" 

2k" 

Figure 6.  Details of electrical potential model of the ultimate wake 
of an optimum; lightly-loaded, two-bladed shrouded propeller. 

/-r^ 

0.010"Dia. Platinum Wire 

0.10" Dia. Glass Tube 

10" (approx) 

Figure 7- Details of probe. 
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Figure 8. Probe Mounted on Traverse Mechanism. 



Standing Wave Indicator 

Probe 

Potential Tank and Model 
Variable 
Capacitors 

AAAAAA 
Variable Resistance 

io> 
^OO-cycle generator- 

Figure 9«  Schematic wiring diagram. 
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model and the resulting configuration was very slowly filled with tap 

water which had been standing in closed containers for a period of about 

2k  hours to allow as much of the dissolved air as possible to escape. 

When the model was completely filled^ it was placed in a horizontal posi- 

tion.  The 400-cycle power supply was then started and a 135-volt poten- 

tial was applied across the model.  The probe was introduced into the 

fluid at the model midpoint through a hole in the model wall and was so 

positioned that the exposed platinum wire was on the surface of the heli- 

cal plastic sheet at the axis of the model.  The capacitive and resistive 

bridges were adjusted until the meter on the standing wave indicator 

indicated a minimum voltage reading.  A vertical traverse was made across 

the helical sheet and the voltage readings at the sheet surface were 

recorded.  The voltage variation along the axis of the model at 

the sheet surface was also determined and recorded.  The probe was then 

placed at the model axis on the other side of the sheet and the traverses 

were repeated.  In order to investigate the effects of the ends,, the 

model was rotated one-sixteenth turn and the measurements were recorded 

for this position, which was closer to one end.  This procedure was 

repeated several times at each traverse station. 

Essentially the same techniques were used for the four-bladed wake 

model, except that the traverses could only be made across a radius. 

Experimental Results 

The non-dimensional results, along with the theoretical distribu- 

tion for an infinite number of blades, are presented in Figure 10 and 

correspond to the K(x) function of Theordorsen in Reference 3-  This is 

the non-dimensional blade bound vortex distribution as defined by the 

following relation: 

where b 

r 

R 

K(X)       =    fc>^ 
r(r) 

oo 

the number of blades 

radial co-ordinate 

blade radius 

') vV ro 

) (r)  the blade bound vortex strength at radius r 

21 
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Figure 10.  Variation of nondimensional optimum blade bound vortex 
strength distribution function with nondimensional blade 
radial station for two shrouded propellers as determined 
from potential measurements and a comparison with a 
theoretical distribution for a shrouded propeller having 
an infinite number blades.  Plotted points are representa- 
tive and not inclusive. 

22 



XL    the angular velocity of the blades 

V«    free stream velocity 

W parameter describing the apparent axial motion of the wake 

vortex system 

x     non-dimensional radial station,,  r/R 

This K(x) distribution was obtained from the potential models by 

dividing the potential drop across the sheet by the potential drop 

between successive sheets. 

It is estimated that experimental error is about + 2 per cent of 

the maximum readings.  The maximum difference between readings taken at 

the same radial, station, but at different axial stations, was about + 5 

per cent of the maximum readings and is a measure of the geometric accu- 

racy of the model.  The curves presented in Figure 10 represent the 

average values of several radial surveys taken at several different 

axial stations.  Plotted points are representative only and not inclusive. 

The values of the mass coefficient or total induced velocity loss 

parameter M for the three cases was determined from the definition 

X = 2J    KC*) X J)* 

For the two-bladed propeller, M. = O.l^l; for the four-bladed propeller, 

H = 0.165; and for the infinite number of blades, X = 0,200.  These 

correspond to the free propeller values of 0.059.» O..O96, and 0.200, respec- 

tively. 
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DIGITAL COMPUTER METHOD 

Theoretical Analysis 

The methods of classical vortex theory are well-established so 

that only those changes which pertain to this particular problem will be 

presented.  In this case^ a vortex system of known geometry and motion- 

(i.e. right circular helical sheet of infinite length which appears to 

move as a solid body) is given^, and the problem is to find the distribu- 

tion of vorticity which will satisfy these given boundary conditions. 

The Biot-Savart equation supplies the necessary relation between the 

geometry, the motion., and the vortex sheet strength.  It may be written 

as follows: 

where dV.    increment in velocity that is associated with a vortex 

sheet element of length ds'  and width  dr at a point 

^ strength of vortex filament 

ß angle between normal to element  ds!  and displacement 

vector^  P from ds'  to the point; measured in the plane 

determined by ds'  and P 

ds'    length of elemental vortex filament 

P     distance from element ds'  to the point under considera- 

tion 

The integral relations for the velocity components in Cartesian 

co-ordinates are given in Reference 5? page 211, and are repeated below 

for the vortex sheet system which has been repla.ced by M finite 

strength vortex filaments. 

'Vw 
4U/   .   ^/\4^±zi: _ 44 rapi' ^ P f    pa (3<=0 
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^^ = ^    HIT 

X-* Jx' i-i i±! (3t>) 

^V= ^r ^-^ C^) 

where  ^ ^ / ■*" 

X    v     i 

Cartesian co-ordinates defining the point P.  The 

z-axis and the axis of the vortex system coincide with 

the positive z-direction in the direction of advance 

of the vortex system 

Cartesian co-ordinates defining the position of the 
th 

vortex sheet element ds'  of the filament 

velocity components parallel to the x-, y-^ and z- 

axes respectively associated with the m— vortex 

filament. 

^ - {(*-^)z+cW~)i^-^)li N 

The components are more conveniently expressed in polar co-ordinates so 

that the following co-ordinate transformation is made.  See Figure 11« 

^ 

X 

is) 

/ 
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Typical Helical 
Vortex Filament 

X.*,* 

1)1 

Figure 11.  Coordinate Systems 
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where  ^^  helix pitch angle in radians 

Substituting into Equations 3 yield 

U„ 
(i*.) 

"•» 'Iw/f'^^'C'-f^^* >--^-,.-.Vfc,^ji 4£: 

1«C1       /  V J P 

(a) 

C^) 

where ?   ,"2 

The boundary conditions are more conveniently expressed in terms of th« 

velocity components along the vortex sheet and perpendicular to the 
sheet, Thus^, 

(Bi) 

(80 

27 



where u  the radial velocity component 

u„ the component parallel to the vortex sheet and normal to the 

radial component 

u  the component normal to the vortex sheet and the radial com- 

Iponent 

(D     the helix pitch angle of the sheet at the point where the 

velocity components are to be calculated 

The boundary conditions require that the radial velocity of each 

vortex filament making up the vortex system be zero; the normal component 

be proportional to the cosine of the helix pitch angle; and the tangen- 

tial component be unspecified or immaterial. An additional requirement 

is that the line integral of the velocity taken about a path enclosing 

the wake be zero. 

As far as is known_, a solution of Equations 6 in terms of the ele- 

mentary functions has not been found so that the solution becomes 

necessarily a numerical one.  Thus, the vortex sheet is arbitrarily 

divided into a finite number of finite vortex filaments. The boundary 

conditions on the motion of the sheet must then be applied to points 

other than those corresponding to filament points for under such a 

circumstance Equation 7 may become zero and the integrands of Equations 

6 become infinite.  The calculating points for this analysis are chosen 

on the sheet and midway between the filaments for this reason.  The 

equations to be numerically integrated are then as follows: 

'--OD 

•'(2-*/-rV^'j^(t--t)J^<p] ~pr M 
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where W   is the parameter descrihlng the apparent axial motion of the 

wake vortex system. 

The equations may be non-dimensionalized by dividing through by W.    The 

two equations of interest are then; 

— at _ 'yw   "" 

00 

_ 06 

C'öÄ-) 

6°0 

where / = 

^ - 

^^ = x U^^, ' = X fe^ öj 

n4 
fW,{*'+x'i z^W^)*^.-!-.'-^^^'/'     (") 

(po  the pitch angle of the vortex filaments forming the 

wake boundary 

R0      wake radius 

29 



Computing Procedures 

For the particular problem under consideration^ it was convenient 

to divide the vortex system into two parts and to further sub-divide each 

part into an equal number of finite strength filaments.  The helical vor- 

tex sheet was thus divided into ten equally spaced filaments., starting at 

the x' =0.05 station and ending at the  x' = o.95 station for z' =0-0. 
m m 

A portion of the boundary sheet was also divided into ten equally spaced 

filaments.  Since the boundary sheet distribution will be periodic in the 

axial co-ordinate, the portion that was considered extended from the mid- 

point between adjacent helical sheets and on the wake boundary to the 

next midpoint in the negative axial direction.  The inner helical vortex 

sheet spacing is given by 

L  -    ■—r     -     r  (is) 

or non-dimensionally 

L      _     2TT"U-V\ 
&L     ■ 

R t> CO 

where L the axial spacing between successive inner helical vortex 

sheets 

H the geometric pitch of the vortex filaments 

b the number of blades in the propeller 

+ O.OSYl 
Thus the wake boundary filaments were chosen to lie ax,     z1 = X —■ , 

m      _b   ) 

- 

The calculating points were chosen midway between the filaments as 

follows: * = a.;, o.a, 0,3, ....,*.*; *ao ana ^^±^"3--^-; 

-  "X-^ ~ ~~h—'  '—b—  5 X- ).0 . For the two-bladed wake^ T'^jfT . 
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For the four-bladed propeller wake,, r~  ^T)""'}'?"« 

For given x,  z,     and -y     ,     the integrals of Equations 10 may he 

numerically evaluated for the given vortex filament geometry thereby 

yielding for this case of twenty filaments, forty equations with the 

filament strengths being the twenty unknowns. The resulting equations to 

be solved simultaneously are 

?». 

4» I« 

^».v 

>d 

{.HirB-t*   Jit, 

o 

o 

0 

C^Qll 

(IM) 

where the  "A" s are the evaluation of the integral in Equation 1.0a and 

the "B"s  are the evaluations of the integral in Equation 10b. These 

forty equations were reduced to twenty normal equations by a least 

squares method.  These twenty equations may be reduced to nineteen by 

applying the necessary condition that 

20 

4 TT £o ^ 
= O (15) 
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Thus the vortex filament strengths were found by solving the resulting 

nineteen simultaneous equations.  (The twentieth value was found by sub- 
■ 

stituting the nineteen values back into Equation 15-) 

Computer Results 

As a check on the analysis^ the case for the two-bladed free pro- 

peller wake for tan m  =0.5 was computed and compared with the results 

of Reference 2.  The comparison is presented in Table I and Figure 12 

where it will be seen that the maximum difference in computed non- 

dimensional optimum blade bound vortex distribution is about 5 per cento 

The source of this difference was not investigated because it was felt 

that for the present purposes,, the agreement was satisfactory. 

The first results for the non-dimensional optimum blade bound vor- 

tex distribution for a two-bladed shrouded propeller as determined by a 

numerical analysis is given in Table II.  It will be noted that,, although 

the computed distribution has the same general shape as that determined 

by measurement in the potential tank, the magnitudes are apparently in 

error by a factor of approximately 2 l/2.  The probable reason for the 

discrepancy is discussed In the next section. 
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TABLE I 

Comparison of Computed Non-dimensional Optimum 

Blade Bound Vortex Distribution for a Tvo-Bladed Free Propeller 

TAN <p  = 0.5 

Stat ion Goldstein, Ref. 2 Computer 

0.0 

ol 

.2 

• 3 

.k 

• 5 

.6 

.7 

.8 

• 9 

1,0 

0.0 

.092 

.175 

.21+3 

.295 

«329 

.331 

.295 

.220 

0.0 

0.0 

.0905 

.1725 

.21*05 

.2915 

• 3235 

»3350 

.3250 

.2875 

.2090 

0.0 
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Figure 12.  Comparison of two methods of computing the variation in 
nondimensional optimum blade bound vortex distribution 
with blade station for free propellers. 
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TABLE II 

Computed Non-dimensional Blade Bound Vortex 

Distribution for a Two-Bladed Single-Rotation Shrouded Propeller 

Tan (D  = 1.356 

x                             Computed Measured 
_ i 
.05                                                                      .0269 -012 

.15                                                                .0776 .036 

.25                                                                -1337 -061 

.35                                                                .1862 .087 

A5                                                                -2375 -HI 
.55                                                             .2872 .132 

.65                                                             -3350 .1^8 

.75                                                                -3798 .16^ 

.85                                                                ■1+196 ..l?^ 

.95                                                                .1+503 -180 
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DISCUSSION 

Methods of Obtaining Design Parameters 

Both the potential tank approach and the digital computer approach 

have advantages and disadvantages.  The primary advantage of the poten- 

tial tank method is that after the model construction has been completed 

and the electrical apparatus has been assembled, the measurement of the 

desired quantities may be accomplished with relative ease.  The accuracy 

of the results is directly associated with the accuracy of the model con- 

struction,, but the effects of small geometric inaccuracies on the 

measured quantities may be made small by making the surveys at a number 

of stations and taking the arithmetic average of the station data.  The 

greatest disadvantage of this method lies in the model construction. 

Using the techniques previously discussed, a usable helical surface 

having a geometric pitch less than the 1.356 used in the experiments 

could not be obtained although considerable time was spent trying to do 

so.  The cementing of the helix into the tube was also a time-consuming 

process.  It is believed that additional development of the forming tech- 

niques will be required if this approach is to be used to obtain the 

necessary design parameters. 

The digital computer approach is almost at the opposite extreme. 

The mathematical model of the wake vortex system may be easily formulated 

and its geometry may be made as "exact" as is required.  However, it is 

necessary to replace the continuous distribution of vorticity in the wake 

with an approximate system composed of a finite number of finite strength 

vortex filaments.  The integration itself, being numerical, introduces 

some error.  It appears from the results presented, that these approxima- 

tions may have Introduced errors which were magnified out of all propor- 

tion in the particular method used to obtain the simul-caneous solution of 

the equations for the strengths of these vortex filaments.  The distribu- 

tion of bound vortex strength so obtained seems to be dependent upon which 

filament is eliminated in satisfying the requirement of Equation 15=  The 
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usual tests were applied to the determinants obtained from the array of 

simultaneous equations and it was shown that this determinant was "well- 

behaved" . 

It has been previously mentioned that the shape of the computed 

distribution agreed qualitatively with the measured distribution, but 

that the magnitude was greater by a factor of about 2 l/2.  Considerable 

time was spent in trying to determine the origin of this apparent factor 

but no conclusion could be reached within the allowable time and finan- 

cial limitations. This difference was totally unexpected since the pro- 

gram as written for the computer had yielded results which compared 

closely with published results for lightly-loaded free propellers, as is 

shown in Table I and Figure 12. 
- 
The question arose as to which of the two distributions was most 

likely to be correct.  On comparison with the theoretical distribution 

for an infinite number of blades, as shown in Figure 10, it was reasoned 

that the calculated results were in' error because these latter computed 

values exceeded the theoretical values for the infinite number of blades 

by an appreciable factor.  The computed mass coefficient or total velocity 

loss factor X, also exceeded that of the infinite number of blades.  The 

measured distribution and computed mass coefficients for the two- and 

four-bladed propellers, however, indicated the same qualitative comparison 

with the infinite number of blades as for the free propeller cases of 

Reference 3; that is, the finite number of blades cases yielded lower 

mass coefficients than that of the infinite bladed propeller.  For this 

reason, it is believed that the measured distributions are representative 

of the bound vortex distribution of shrouded, lightly-loaded, single- 

rotation propellers having a finite number of blades. 

In spite of the inconclusiveness of the computer results, it is 

believed that this approach would be the most efficient means of determin- 

ing the necessary design parameters.  The first step in a continuation of 

this approach would be to obtain an independent check on the coefficients 

appearing in the array of simultaneous equations.  This has not been done 

because of the time and financial limitations.  A second or concurrent 

step would be to increase the number of filaments considered and to compare 
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the resulting vortex distribution with that of the original computation. 

A third possibility would involve a slightly different mathematical model 

in which the desired distribution is expressed as a Fourier Series and 

instead of solving simultaneously for the ordinates of the distribution 

curve, the Fourier coefficients would be determined.  This latter approach 

has proved to be advantageous in the calculation of three-dimensional 

spanwise wing loadings and may offer the same advantages in this case. 

Methods of Presenting Design Parameters 

In order to cover the range of advance ratios and number of 

blades which are likely to be of interest, it is suggested that any 

continuation of this investigation should determine the optimum bound 

vortex distribution for shrouded propellers having from two to five 

blades both single- and dual-rotation, and for a range of wake helix 

pitch angle <po from about 10° to about 70°.  These results could be 

presented in the form of tables and charts in which K(x)  is plotted 

versus blade non-dimensional radius  x for various wake advance ratios 

/\=t^(pe>  jn addition, it would be necessary to determine from these 

distributions, the mass coefficient H. ;     the axial loss coefficient € ; 

and their ratio, ^- .  These parameters could also be presented in the 

form of tables and charts as plotted versus advance ratio A    for various 

numbers of blades. With these charts available and for correctly 

designed shrouds, the design of the optimum propeller becomes a straight- 

forward process as Indicated in Appendix IV. 
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CONCLUSIONS AND RECOMMENDATIONS 

The potential tank approach will yield hy direct measurement the 

parameters necessary for designing optimum shrouded propellers, but it has 

an inherent disadvantage in that the construction of sufficiently accu- 

rate models is difficult and time consuming and further development of the 

construction and forming techniques would prohahly be required for models 

having a lower pitch than about 50°. 

The results obtained from the first digital computer attempt to 

determine the bound vortex distribution were unsatisfactory.  Due to limi- 

tations on time and funds, it was not possible to resolve the discrepancies, 

However, it is believed that the digital computer approach would in the 

long run be more efficient.  Thus, it is recommended that the digital 

computer approach be used in any extension of the present work. 
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APPENDIX I 

VORTEX SYSTEM 

The argument as to the geometry and motion of the wake vortex pattern 

of an optimum shrouded single-rotation propeller is essentially the same 

as that presented "by Betz in reference 1 and Theodorsen in reference 3- 

Following these approaches^ consider a non-optimum shrouded propeller 

which is producing the required thrust at the expenditure of the necessary- 

amount of power.  At a distance "behind this first shrouded propeller system 

such that the shroud interference velocities are negligible^ arrange a 

second shroud-propeller having the same number of hlades and rotational 

speed as the first propeller and so phased with the first propeller that 

each blade intercepts one of the sheets of discontinuity that is shed 

from the former propeller's blade trailing edges■ The diameter of the 

shroud of this second system is set equal to the wake diameter so that 

it intercepts the sheet of discontinuity that is shed from the first 

shroud's trailing edge^  Assume that the second propeller is mounted on 

an extension of the shaft of the first propeller and assume further that 

neither the second propeller nor the shroud contribute to the motion of 

the wake nor disturb the flow in any way.  Similarly place a third 

shrouded propeller, et cetera^ until a large number of shrouded propellers 

are arranged in tandem^ all mounted on the shaft of the first propeller, 

all having the required phase relation, and none contributing to the 

motion of the wake nor to the thrust or power required. 

In general, certain of the blade elements of the first propeller 

will be operating at relatively high efficiencies while other elements 

will be operating at relatively low efficiencies.  This will be evident 

in the wake, as will be seen later, by the pitch of the wake spiral; 

the efficiency being higher where the pitch is lower and vice versa. 

Suppose now that on the second shrouded propeller, a positive increment 

of thrust is added to a blade element operating in a region where the 

pitch of the helical vortex sheet is low and an equal increment of 

negative thrust is added on the third propeller to an element operating 
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in a region where the pitch is high.  The thrust of the complete system 

remains unchanged hut the third propeller adds more power to the shaft 

by acting as a windmill than the second propeller requires to produce the 

thrust increment so that a net reduction of the power required hy the 

system is realized.  (Of course skin friction is neglected and it is 

assumed that the thrust increments are very small so that the power re- 

covery factor is 100^.)  The efficiency of these added increments may 

be obtained by considering figure T-l: 

Figure 1-1.  Velocity diagram in the ultimate wake. 

Using the Kutta-Joukowski theorem, the increment in thrust is 

ZlT = 

where AT 

r 
4p 

the increment in thrust 

fluid density 

the increment in bound vortex strength 
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■**    the propeller rotational velocity 

**    the radius at which the Increment In thrust 

is added 

^•J/-   the component of the induced velocity «^J In 

the plane of rotation 

The Increment in torque is 

where 

^Q    the increment in torque 

'» the velocity along the flight path 

^ the axial component of the Induced velocity 

Tills gives for the efficiency, n 

pAFf-Q-*'- Ujr) K. 

where 

W  = 

/ 

w 

(fi-O 

YOO 

and   W    the parameter describing the apparent axial motion of the 

wake vortex spiral 

The elemental efficiency is thus simply a function of the ratio of the 

apparent axial velocity of the helical vortex sheet element to the free 

stream velocity,,  The aforementioned process of adding an increment of 
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thrust on a blade element of one propeller and. removing the same amount 

on the following propeller with a net reduction in power required is 

continued until no further reduction is realized.  At this point the 

efficiency of the added element of thrust will he the same regardless 

of the radius at which it is added»  From equation I"/ this occurs 

when the parameter W   is the same at each hlade station for the last 

propeller in the array*  The wake behind this last propeller represents 

the wake for the optimum case.  The problem now becomes the determina- 

tion of the single propeller-shroud combination which will yield the 

same wake configuration as the array. 

The preceeding analysis shows that the optimum condition is ob- 

tained when the ultimate wake vortex pattern appears to move as a 

rigid body and the pitch of the inner helical wake spiral" is constant 

along the radius.  Unfortunately no other Information is obtained about 

the geometry unless some additional assumptions are made about the 

disturbance velocities associated with the shroud.  For this analysis, 

it will be assumed that the system is lightly loaded so that shroud 

disturbance velocities are such that the wake has reached its ultimate 

configuration at the shroud trailing edge and that the geometric pitch 

of the helical wake spiral is constant.  In addition, each vortex fila- 

ment of the inner helical sheet will intercept the same radial coordinate 

lines.  Therefore the wake geometry and motion are completely specified 

and will appear as described below. 

Consider a two-bladed, single-rotation shrouded propeller and the 

induced flow field that is associated with the vortex sheet that is 

shed from the blade trailing edges.  Without the shroud, the induced 

flow field would be approximately as sketched in figure 1-2 for the 

vicinity of the shroud trailing edge. 
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—Position of shroud mean camber  surface 
before  removal  for lllustqative purposes 

Induced flow 
streamlines 

(( »Q     Q    ßOOßQ 

I    1 
I    I 

I 

Figure 1-2.  Cross-section of wake vortex system of a two- 
bladed single-rotation propeller in the vicinity 
of the shroud trailing edge.  Shroud is removed 
from the flow for illustrative purposes. 
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It may be seen from the figure that such a trailing blade vortex 

system has associated with it, regions having large radial induced 

velocity components and that with respect to a reference system fixed 

in the shroud position, this flow is periodic.  In order for the shroud 

mean camber surface to correspond to a streamline, it is necessary that 

a distribution of vortlclty be placed along the shroud mean camber 

surface in such a manner as to cancel out all velocity components normal 

to this surface.  Since the radial velocities that are associated with 

the vortex sheet change with time when measured with respect to the 

shroud, then that part of the shroud bound vortex distribution which 

cancels out these radial components must also be periodic in nature 

and a function of the number of blades in the propeller.  This part of 

the shroud bound vortex system may be considered to rotate with the 

propeller but for present purposes does not contribute to the wake 

boundary vortex system.  The non-rotating components of the shroud 

bound vortex system are considered to be circular rings bound to the 

shroud mean camber surface as shown in figure 1-3. 

The wake boundary vortex system is comprised of the continuations 

of the vortex filaments that are shed from'the blade trailing edge 

which in turn represent the changes in the blade bound vortex strength 

with radial position along the blade.  Thus the blade bound vortex at 

the blade tip is considered to be continued into the shroud contour 

where it is spread out on the shroud mean camber surface as depicted 

in figure 1-3«  While within the contour, it. is assumed that all of the 

necessary adjustments in phase relatiohship with the blade trailing 

vortex system occur so that the motion of the wake boundary vortex 

system is along the tangent to the shroud mean camber surface at the 

trailing edge. 
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Stationary 
components of 
shroud bound 
vortex 
distribution 

Continuation of blade tip 
bound vortex into shroud 
contour with subsequent shedding 
at shroud trailing edge 

Figure 1-3, Vortex system on shroud mean camber surface 
showing non-rotating components of shroud 
bound vortex distribution and the continuation 
of the blade tip bound vortex into the shroud 
contour vith its subsequent spreading out and 
shedding at the shroud trailing edge as the 
vake boundary vortex system. 
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To simplify the illustration^ it vill "be assumed that the shroud is 

so designed (i.e. long enough) that the wake has achieved its ultimate 

configuration at the plane of the shroud trailing edge.  Thus in order 

that no further distortion of the wake take place; there must he shed 

from the shroud trailing edge a cylindrical sheet of vorticlty of the 

proper distribution and phase relationship with respect to the hlade 

sheet so as to fulfill this condition, (i„e. velocity vector must he | 

tangent to shroud mean camher surface at the trailing edge.)  The motion 

of these vortex systems for the lightly-loaded case must he the same as 

that of a nut on a screw where the shroud trailing sheet corresponds 

to the thread on the nut and the hlade trailing sheet corresponds to 

the thread on the screw«  It is to be noted that such a system will 

always maintain the proper phase relationships while having different 

rotational velocities (all the necessary adjustments in configuration 

having taken place within the shroud).  There is, of course, then no 

further change in the distribution of vorticlty with respect to the 

helical coordinates defined by the vortex filament.  It is believed 

that a cross-section of the optinum shrouded-propeller wake vortex 

system will be somewhat as indicated schematically in figure 1-4 for 

the two-bladed case.  It is this configuration that is considered in 

the analyses of this report. 
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Figure 1-k.     Cross-section of the vortex system of a twO- 
bladed, single-rotation^ shrouded propelled 
as visualized for the analyses of this report. 
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APPENDIX II 

CALCULATION OF THRUST AND POWER 

Using the momentum theorem and considering the 
in figure II-l, 

g the control volume shown 

s,^ l 

1  ' 
I  I 
I I 

I I 
\    I 

V / 

r t S 

; rJrSt 

1  I 

I 

&+«J 

I 
I 

Figure II-l.  Control volume used in determining the thrust, 

the thrust is found by considering the average pressure forces acting on 

the control surface and the average time rate of change of momentum of 

the fluid within the control surface.  This average is taken over a time 

At  = 2Tr/bn.      and. the integration is with respect to time J* =   J>fS(v'ni-*') 
so that 

or 

T + ^^)JQ~-)>)^ = j^ffau, + U?) Jite ^ (} 
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since 

where 

£, J5, = (&TH*)JiSz. 

r 
b 
14. 
w 

sx 

S 

r 

■t 

thrust on propeller-duct system, lbs 

number of blades 

undisturbed, free-stream velocity, ft/sec 

apparent axial movement of wake helix with respect 

to a point fixed in space, ft/sec 

rotational velocity of propeller, radians/sec 

undisturbed, free-stream static pressure, lbs/sq. in. 

static pressure, lbs/sq. in 

coordinate along wake axis, positive in opposite 

direction to propeller thrust, ft. 
2 

control surface area, ft 

fluid density, slugs/ft  (incompressible) 

axial component of the induced velocity, ft/sec 

time, sec. 

Before equation II-l may be integrated, an expression must be found 

which relates the local static pressure to the local velocity.  This re- 

quired expression may be obtained as follows by integrating Euler's 

equations of motion along a path in a frlctionless, homogeneous, irrota- 

tional, incompressible, unsteady flow field.  Since a velocity potential f 

exists, the X -component of Euler:'s equation may be written 

d? 

A M LA. O JAJ~ 

Multiplying by ^/ and imposing the irrotationality condition that  Jg" - — 

j^ = jy      the following is obtained 

Multiplying the *§-   and  2--components of Euler's equations by J-^ and c** 

respectively, imposing the condition of irrotationality, adding the three 
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resulting scalar equations and integrating gives the desired expression. 

+ 1 ±vl + -fa) = CO/^iTAA/T (ir-2) 

Considering first the region outside the wake, there can be no 

induced velocity at r= <*> So that Sjrj ~   0 ; f^Wj  = 0 

so  that 
■■y^oii 

Ü +1 i^^(t)-  p +iyj=   p 0r~*) 

where fi   is   the stagnation pressure in the undisturbed flow.  The region 

within the wake boundaries is not so simple and additional relations 

must first be found. 

Consider a helical coordinate system ^ f y S' which is defined 

in terms of the cylindrical coordinates r "h i- as follows so that for 

the instant under consideration^ the helical vortex sheet coincides with 

the ^-o  surface. 

•y* = y o £ y < oo 

* s ^ &-") 

KZJrs 

where J1 is measured along the helical vortex filaments; ^ is measured 

along a helical line that is normal to the vortex filaments and 0 is 

the helix pitch angle of the g-cofiT.   coordinate lines. 

Due to helical symmetry, the disturbance velocity vector is constant 

along helical lines r =   ovsr, )   ana ^ = cwsr.    poth inside and outside 

of the wake.  Therefore 

iKO 
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us = i-1 - ^ fr e) 

Hi = # = ^?) '5   a?     '! 

where <p     is the Induced velocity potential. 

Wake axis 

Wake boundary Helical 
vortex 
sheets 

Figure II-2„  Wake vortex system showing the various paths 
along which the line integrals are calculated. 

Consider the line integral of the velocity along the path ABC PA 

within the wake as shown in figure II-2,  The line BC    ±s  a helical line 

along which both t* and £     are constant so that W-»  is constant.  The 

lines ^B  and C.D    are radial lines such that the same helical lines, 

r-   CO//STA*T  aru3_ ^ = constant, intersect both lines.  The line OA 

coincides with the axis of the wake»  Since no vorticity is enclosed by 
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the lines^ the line integral should be zero 

ar(^t)A^    ur.^yDC    so that ^f^^^ ^«y^^ = 0 But  "^(T'V^' "y^'SJnr so that  I "f.-' -/^r<.^ - '■    ar!,d 

the remaining terms give 

U. S(r.-|B) ^-u  (^-ej^o 

assuming that      ^e is  different from  zero. 

From equation     ^-~ T 

^c-fß = C^ii^f + ^"-9)- (yi^^? +^^9) 
and  if 

r?Tr I/»"*-w 1 1/*,+ w 

then 
l/„ + w 7 Ib + w 

- O 

U-r  —H.  ut 

^ y Cov. a>   -tr  sv-^ 9 —; Urx. Cl  + sv-". CD 
■Xi ' Üa + W T T 

Consider next the line integral of the velocity along the path trGwt 

outside the wake as shown in figure 11-2.     The line ^£   is a helical 

line on the outer surface of the cylindrical sheet of vorticity and is 

parallel to the vortex filaments.  The lines £F       and &^       are  radial 

lines such that the same helical coordinate lines^^^ COA/ST.     ^ ^ = CONST. 

Intersect "both lines so that {x^^rj^)Er.   ~   uy (^ £)sw      -  The line FG 

is a helical line at "^ = ^ .  As no vorticity is enclosed by the line, 

the line integral is again zero. 

P 

F Q rt 
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Since W£    is parallel to the vortex filaments on the surface of the 

cylinder,, there can be no discontinuity in this velocity component so 

that U 
**: 

=   u. -      M, ^ ,   where    <pt      is  the 

helix pitch angle  of the "boundary wake  filaments.     Again 

and 

r r14   * —      o 

a!(h-sF)+\~~f,(ss-K) - -    0 

If 

'F£ 
*rF*  i£~.o TH E A/ t,=-f ;**-**-- w 

and 

U I y-^uri, A 14 ^-^ -^fl  +   ^ t 

u. 
ro 1/« + IV      ■ 

_   ulo^ <pftB[«o ^ ^, + -n—^- g;. 1 

l^/ 

r t^t <p    t    i^tJ^cv. « 
jn. 

us   = u. ?0^^f (Jt-Jt) 

But  ■r'1^ f = (yf/^ «P  so that as  >*-♦ «o j 

ditions on ^-g  at Infinity are satisfied» 

and the con- 

It has been shown in Appendix I that the optimum condition re- 

quires that the vortex system move to the rear as a solid body.  Equa- 

tions E'f    show that this condition is fulfilled and the total Induced 

velocity at the helical sheet and cylindrical helical sheet vortex 

filaments is constant and equal to 

ment 

U. Thus at each vortex f11a- 

W.»  Ä   U ^  6-ära, (T) (z-0 
and the entire field pattern moves axlally with a velocity, W-   .  For 

other points in the flow however 

Ur    = ^ (vy t) 
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^ = -^(^c) 
There is another condition which these results must satisfy and that is 

that the line integral about a path enclosing the wake must he zero for, 

if this is not true, the velocity potential would be multi-valued out- 

side the wake-  Consider a helical path ^ = ^o J § = "VST. ,w]1ic]a Ues on 

the outside of the wake boundary as shown in figure II-3.  The helical 

path 
Wake axis 

Wake 
boundary 

Figure II-3.  Paths along which line integrals must be evaluated 
to show that the line integral about a path en- 
closing the wake is zero. 

ABC       is closed by a line ^•■" parallel to the wake axis.  The velocity 

component u£       along A&C        j_g constant and equal to ^5 

The length of the path ABC       ±s      2.-TTR0 ■***-?- so that 

/ 
ae^2- +■ £Trl?6 U- "t-^ <p  = 

Next consider the path ACDB Due to helical symmetry, the line 

integral along CD  is equal and opposite to the line integral along t£. A    , 

and 
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H» ä- U* A* -      O 

But  if the line 

Therefore 

DE 

/ 

is allowed to approach r^J uio - o WB 

% 

and the flow pattern (i,e, a system of vortex filaments having the 

same geometric pitch) is not possible unless U-*   —   0       „If the 

axial velocity is zero along the wake axis, then ^_j   is zero every- 

where.  Thus the induced velocity is everywhere normal to the "^ = (-vsr-At/Tj 

5 = tovjTAA/T iines and at the vortex filaments. 

U§ = W Cos. f 
where W     is a parameter which, along with the free stream velocity "e 

determines the geometric pitch of the helical vortex system.  The 

vortex system will again appear to move as a solid body but actually 

there will be relative motion between the fluid particles in adjacent 

vortex filaments. 

The induced velocity component Uv will be continuous everywhere 

except across the cylindrical boundary of helical vortex filaments where 

the change in the value of this component is equal to the sheet strength 

r* t V o  Thus 

ror)  = u 
Sat 

(E-T) 

where  ^ V. is the component normal to the filament in the X  direc- 

tion that is just inside the wake boundary and  ^J +   is that component 

which is just outside the wake boundary.  In addition 

^S *  u-rR* rs   W    UrZ, 9, (ir-6) 
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if rex) is constant, then Ur 
'Rt is zero and  «* . =  Z W ^ fg. 

If fit/     is not constant, then it may be shovn that 

period :—TT^—\ a^n^L  is such a function that 

«. 
U., 

J<: 
has a 

Mfr) 

a Jf   =   o (ar-.; 

This is most easily shown by taking the line integral Just outside the 

wake boundary along a line 3 ~ ca**Tt,trr    where  Wij - Ö   an(3_ -then , 

closing the path along a line f = co*/si>*r for which M- = f (^j 

Consider now the region adjacent to the line of contact of the inner 

helical vortex sheet with the cylindrical wake boundary sheet of helical 

vortex filaments as shown in figure II-4 

There can be no radial velocity in the 

region indicated by the arrows because 

of the assumption that the wake 

boundary is a right circular cylinder» 

Therefore in this region ' C*/ = CflA/5T. 

and the strength of the vortex sheet 

is zero.  The requirement on w^  for 

the helical sheet filaments just in- 

side the cylindrical wake is 

Wake 
boundary 
filaments 

Helical sheet 
filaments 

Wake 
axis 

Figure 11-^.  Region adjacent 
to intersection of inner 
helical sheet with boundary 

sheet. 

Cff-'ö) 

The requirement on the helical filaments of the wake boundary is 

U,, =  w <-*rl- 
K0 

V (*-") 

Thus the strength of the boundary sheet in this region must be zero 

because ^ is continuous and ^_~*  f *s Rr so that 

^es ■>- "tit _ =. WCM(f>^ (Jt-IZ) 
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and 

lv   h:       V      V      V 
(i-'s; 

Returning now to the case for which U«  is different from zero, 

It will "be shown that a solution may he ohtalned If the inner and outer 

sheets have different geometric pitches.  From equation IT-S" 

U, U _ ^J^~^   CD 

The  requirement -that  the   inner helical sheets move  as  a rigid "body gives 

x X 

Taking the line Integral along a path * ~ S") i V ~  y^      an(^ then closing 

the path along a line t ~   X^    y      Y* -    Y*l 

/ UTTJ 

For the last outboard filament in the inner helical vortex sheet 

and 

The helical filaments in the cylindrical sheet that are adjacent to the 

aforementioned filament have a velocity in the 5  direction 

U, 
2 

2   { ~5 « -J- /'uT^^vs2,!  + »v*t«.? v)' 
and the cylindrical sheet strength at this point is 

for zero induced velocity outside the wake at this point. 

(X-U) 

(iL-iS) 
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This last condition is rigorously applicable to the heavily loaded, 

shrouded propeller in which the helical filaments of the outer boundary 

have a different apparent axial motion than that of the inner helical 

sheet.  In Appendix III, this condition will he used to obtain the 

blade bound vortex distribution for a shrouded propeller having an 

infinite number of blades, 

Returning to the lightly loaded case, that is, the case in which 
u5o - 

0  and the geometric pitch of all the helical filaments is constant, 

it is now^-posslble to calculate the thrust.  Since the motion of each 

filament is normal to itself, the velocity potential is 

so that P      or grad <p remains unchanged if the reference point moves 

such that 

Therefore if 
it it it' 

-    — W um. f # 

r =   Y* 

=     — U^ W Urs., 

since 

i*L us  =   it 

or for the case of the coordinates fixed in the shroud 

(E-n) 

For the disturbed flow field, equation IT-a becomes 

+ -~v.  ~ (y^+^^^f = ^L (in- !&) 

At each point on the wake boundary, the static pressures must be identical 

both inside and outside. 
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, , .,.:.. .    '   '      ' 

%--   -    -       ' v  " ' ^        ^ 

(ir-)q) 

(TT-zo) 

Outside  the wake^ 

and 

(i-a 0 
Inside the wake 

Equation II-l then becomes 

T 

bne +2^+^)/l^w?^<? ^^^V +i(V-^>) 
y«(.i/«e ooTiiee WAKS 

+ ut^ [v^*f)] M^tS (r-23) 

where the integration extends over a volume equal to the product of the 

control surface area normal to the wake axis at a far distance behind the 

shrouded propeller and the distance between successive vortex sheets. 
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Consider the line Integral along the closed path Aß£ P A 

vake as shown in figure 11-5.  Ihe lines A8      an^   CO 

are radial lines lying on the surface of the helical 

vortex sheet, ^ coincides with the axis of the 

wake and PA is parallel to the wake axis,, 

inside the 

Figure   II-5.   Path of   inte- 
gration within wake. 

r* rc rv r* 

or  since 

AMP 

fu,^  =  r(x) 
r 

or j    U^ csn-q i*     =     rC*) 

Similarly along a path outside the wake 

Thus 

-"" R, 

0 0 

-  f (2^+wJ Hw f (ir-2v; 

11-13 



where F the cross-sectional area of the ultimate wake 

K =  2/ K(*)xJx 
Jo 

K(y  H /zir(*„+*')*>\ 
\      bÄ  J 

Consider the remaining integrals term "by term. 

yetuae ivsioe HVAKS     ' O 'Q 

>   t* 

- - efa+M)* KO) RXJ   xäxh 

= '?iv*+*)w (zveyi) KO) 

where      ^^0        is    K(*)      evaluated at      * = '• 0 . 

For the third term  in the  first   integral of  equation    31-23 

1/!   =   (Üoi-U* »rufj +Us  i~\   -  l/J***]!*^   c^.f0 + dV- _ 

(JL-Il) 

• 

^^ ^(t^^^fj +M5^V + ^= l/J'+z/nU^f+uZ+uj: 
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so  that 

The  first  term of  equation    ^■-2e        is upon comparison with equation IT-iT 

ttpJ») h^K^-Us^teäs = etwKiOF (IL-ZI) 

►'«LUME     /«iJ06    (VAl^f 

IL-zt The second term is upon comparison with equation 

The third te:rm may be reduced to 

which on comparison with equation M-2-7 

b-ap      f 
ZT 

The remaining terms in equation ^-26 are 

(IT-3D) 

(11-3,) 

(?-**) 

where it is remembered that the volume is enclosed between two parallel 

planes which are normal to the wake axis and are a distance apart equal 

to the distance between two successive helical vortex sheets.  This 
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. 

volume is also equal to that enclosed, between a full turn of two successive 

helical sheets so that, on account of helical symmetry, the integral may 

he written 

hue __       _ 
ZvCa 7^-ji V<l>'.V</>' JsJs' (jt-33) 

is' 

4' 
Using Green's first identity or theorem 

where  «^    an element of area of the vortex sheet 
/ 

the disturbance velocity potential 

l/AI ^ - - 

where ^^   is an element of vector area of the vortex sheet and 9     and 

F^ are evaluated at the vortex sheet.  The vector olS       is outwardly 

directed with respect to the volume.  For corresponding elemental areas 

on successive vortex sheets enclosing the volume, J'-S' has opposite signs 

while Vf   must have the same sign to satisfy the required motion of the 

vortex sheet.  Since the integrand of equation 11-32. must be positive, 

the smaller value of ^   goes with the elemental area vector which has 

the negative sign.  If ^   is replaced by ^^  then the integration need 

be carried out over one of the surfaces, where Af>        is the difference in 

potential between corresponding elemental areas of the vortex sheet. 

There is no contribution from the boundary sheet because the vector area 

and velocity vector are perpendicular. 

At the vortex sheet  t7^ - VV£«xf   and Alj)   -    PC*) so  that 

equation "'T-32'  becomes 

w j rc*)<*".<? As'  - wfrc^^s 
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*-• and finally 

■ 

V'OLUI«     /«v-i'sff   WAX€ 

ZT^+WJ    1 ■kC'v+ «/)*)* ^S  =-^tV2M(=F ^-3^) 

For the  second term in "both integrands  of equation ^-^-i    define a quantity 

as  was  done by Theodosen  in reference  3,   such that 

^C^ + ^j    j   Uf^fJ + Js   -    ?6WlF (1L-2L) 

where f  may he termed the axial energy loss factor.  The remaining term 

in the third term in the second integral of equation H-Zl ,     Expanding 

this term 

The integral of the first term is zero because  J    ^5 Mr>-^ i^f-   ^s zero 
'», 

over the axial distance considered.  The second term is 

vw-urM  oursiDif wAre 

which hy Green's first identity is 

- i *lffey/0 VH2 

«'   is where *-5  is a element of area enclosing the volume.  At the outer cy- 

lindrical boundary (i.e. V-1» )  pp  is zero,,  At the inner cylindrical 

boundary (i.e. V = ^o ),    Vr       is perpendicular to aS    so that d> W$> »aS 

is zero.  In the general case and for the remaining area, it appears that 
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no additional simplifications can be made except to introduce another- 

'loss factor" as was done in equation IL-ii   .     However^ for the optimum 

condition of the lightly loaded - shrouded propeller, there should be no 

disturbance velocities outside of the vake.  In this instance, the 

thrust becomes 

T = PF "T^K» +*'>K - (/«, + w)wKO) + V^w K(i) - /o. wK 

or T- PP [(1/00+4^WH   -te*1] Cz-n) 
Defining a nondimensional thrust  coefficient 

T 
"s   "     ieC- =     ZMW {\   +   * (i+ £)] (11-28) 

which is identical in forrn with the thrust coefficient of equation 31 , 

Chapter IV of reference 3» 

The induced energy loss per unit time in the wake is found by the 

methods of classical mechanics by integrating with respect to time aX= rz— 

and averaging over a time AT - T-T/h-G-    for the lightly loaded shrouded 

propeller wake for which there are no disturbance velocities outside the 

wake.  Thus 

►v 

c- _ k>n 
2-rr (p'-fu+ie^1)^ f-^e^'^Jit^ (1-3«?; 

where this equation is written with respect to an axis system fixed in 

space and where 

. / 
Z5     static pressure in disturbed region 

|roo    static pressure in undisturbed region 

^ total induced velocity. 
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Equation 1-18 becomes with respect to fixed spatial coordination 

so that upon substitution into equation S-i'i 

(E-Ho) 

E = 
^n e 

2Tr(Ü* + *-) 
**l +i"ZV*]jiJS 

Comparing this   integral with the   integrals  of equations   I'"J-r    anä.   ir~3 6 

it may he  seen that 

or  in nondimensional coefficient  form 

(ir-Hi) 

e  = i rt^t. 
x(i + £*) 0r-w2) 

which is identical in form with equation 2i    in Chapter IV of reference 3» 

The total power coefficient /^f     is found "by adding equations H--36 

and Jr-^2 . 

^P   =    sx-^v (I+*')(I + $:&) Or-43) 

The ideal propeller efficiency V?^  is then 

\ 
-a + $) 

(i+*)o+i) 
(I-tw) 

Although the results of this analysis are identical with those of 

reference 3^ it is to be noted that the values of the quantities  6 

and M. for the shrouded propeller will be appreciably different from 

those values for the free propeller.  However, the methods for evaluating 

f and >C will be identical in form with the results of this reference. 
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The total velocity loss factor ^  is found "by definition from equation IT'^S 

The axial loss factor 6     is determined hy equation &   of Chapter IV 

of reference 3 where It is shown that 

1 i <**• (JT-HS) 

The total velocity loss factor X.      must of course "be a function of number 

of "blades and wake geometric pitch angle or '1  and is to be determined 

from a series of experiments or by a numerical analysis. 

These quantities may be evaluated for the Infinite number of blades 

cases of the heavily-loaded shrouded propeller and the heavily loaded 

encttx^HT free propeller.     Making use  of equation   TU-6     from ^y 

x   =    a  /   K(X) x <ix 

i- A u 
3 - ^2  1 
— 'A/       ' 

Substituting this value of •*<  into equation ^-HS 

'M<^)] 
yields 

(tr-10 

6 =    ' ^IF^-^i'**-) 

-i*[-m>H)][^p-] (&-H1) 
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APPENDIX III 
■ 

DETERMINATION OF THE OPTIMUM LOADING FOR A HEAVILY LOADED PROPELLER 

HAVING AN INFINITE NUMBER OF BLADES 

One of the cases considered in Appendix II was that in which the 

inner helical vortex sheet had a different geometric pitch from the outer 

wake "boundary vortex sheet. -Such—an^-occurance is-eas-äer to-visualize for 

the case of an infinite number of blades "because the outer vortex fila- 

ments must form a right circular cylindrical surface of constant fila- 

ment density (i.e. sheet strength) and the pitch angle of these fila- 

ments must be the same everywhere on this surface.  As a result^ the 

outer vortex filaments will have a different apparent axial motion than 

that of the inner helical sheet.  For a shrouded propeller with a finite 

number of blades^ the outer boundary may again be a right circular cylinder 

or the geometry may be complicated by the presence of scallops in the 

boundary sheet. "In either event, it is possible for the pitch angle of 

these outer filaments to vary with distance along the filaments, and also, 

for the pitch angle to vary with time with respect to an axis system 

attached to a particular element of the filament, while the overall 

boundary pattern appears to remain fixed with respect to the inner helical 

sheet,,  In such an instance, however, it is easily seen that all of the 

vortex filaments must be of constant strength although the local filament 

density or sheet strength may vary.  In any case, the only real require- 

ment is that the boundary sheet distribution and geometry appear invariant 

with respect to the inner helical vortex sheet. 

For the infinite number of blades case, the theoretical blade bound 

vortex distribution may be determined because the wake geometry is known 

and the induced velocity field outside the wake system is zero.  From 

equation IT-IV 

-L 

U*  •SI "5 I t** ^-^ <P  + W ^crl <f> 

which is the total induced velocity vector and is of necessity, mutually 
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perpendicular to the boundary filaments and the radial coordinate.  The 

velocity diagrams for the outer most filament of the inner sheet and the 

adjacent "boundary filament are given in figure III-l. 

. •Sa       P- 

Hellcal filament 

Boundary filament 

Figure III-l,  Velocity diagram for outermost filament of inner 
vortex sheet and the adjacent boundary filament. 

From figure III-I 

W -il" 07IL    0)       +    U. A*-~* 
To- % Ü' 

Woo<. (pK~ 

^w'-an^tb -hW1 '<v~~l<p~\s. 

or after simplifying and arranging terms^ 

^O-L-^V fur-.) 

A second relation may "be obtained by considering the line Integral en- 

closing a portion of the wake'boundary filaments as shown in figure III-2. 

In this figure^ a section of the cylindrical wake boundary equal in length 

to the geometric pitch has been unwrapped and presented in a true perspective. 

Thus the line CD represents the continuation of one of the outermost fila- 

ments ,Aß of the inner sheet.  The dashed lines represent the boundary 

filaments. 
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E    A 
- -Geometric pitch of 

inner helical sheet 

Outermost filament of 
inner helical vortex sheet 

Wake boundary vortex filaments 

Figure 111-2.     Relationship of "boundary filaments to 
„,        inner helical sheet filaments. 

The first line integral is taken along the inner filament AB ,   along which 

the -. ;,; ,city component, is ^P^*^^- through the boundary sheet at ß , 

hack along a path outside-the wake parallel, to /ß when the induced 

velocity components are zero; and is closed at / ;   thereby enclosing the 

boundary filaments "a" through '/C".  A second line integral is taken in- 

side the wake boundary adjacent .to the boundary filaments along the line f7 

where the velocity component is  w Co-«. ^>R, >  through the boundary sheet 

at r , back along a path outside the wake parallel to FE    where the 

Induced velocity components are zero^ and is closed through the boundary 

sheet at.t ;   thereby enclosing the same filaments as before.  The line 

integrals around these two paths are identical so that 

(Eß}-fe^('(pR_-<pJwc^.cp(?.  =  (Eß)^^^. 

or from figure III-l 

£Lkt nR0 ] 
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Simplifying yields 

_    (V- W^wnR^c^a 

Combining equations Iff-1  and 32* "2.   and dividing by Ko     yields the 

cubic equation 

This may be reduced in the usual manner to 

where      Y  = up ^-wv a  + J. .^K. ^ j/ + J. Jv cir^a  1 

The discriminant of the coefficients is negative so that there are three 

real and unequal roots.  It may be shown that only one of the roots is 

positive and this is the desired root.  Writing equation III-3 in the 

form 

^3 +  f> *$z t   % ^   -t- r-     = o 

and  equation 32?~T   in the  form 

X3 + <^X + h   = O 

the desired root is 
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where 

C/ra. 3/)    = -±lfW 
or upon.substituting for A; ^j ^ ^     and neglecting terms of order 

W3 Ura. 
% it  is  found that 

U. •^^ fd- ^ it ^i^1?.^f (l + c^i 
'*■) 

(MS) 

"{.    =  TT * * ^V f1 + C^^J (3B-0 

The expression for the nondlmensional hlade bound vortex distribution 

may be obtained by taking the line integral along the path f* ~ '^    J 5 = S) 

on the upper surface of one of the inner vortex sheets and closing the 

path along a coordinate T = "^ j \-  ^( >   thereby returning to the starting 

point and enclosing all the inner filaments lying inboard of  ** = 7^ 

The velocity component along the path 'y*=r| j 5'=?, is  ^jr "^"^ ^       and 

the length of the path is  H <*n.<p cji(p vhere ^ is the geometric 

pitch.  The velocity component along the path T^-T,  ^ $ ~ 5,  is W W3-(f 

and the length is  n  ^n- (P       .  Thus 

b r(^)=   ivc^.<p (U^tp^- Ug-tJ^f (tiuT-futcp) (JZ-1) 

or since KC*) = HW 

K(*)   =     ^2fll~-fi-w^f^O+^f^) 
But 

where 

^9  =TO- 

A   = 
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so that 

K(X)-   l^-i1   -i-   J^\ (M-B) 

which represents the nondimenslonal hlade "bound vortex distribution for 

a heavily loaded shrouded propeller or a heavily loaded free propeller 

having an infinite number of hlades.  It is to he noted that if W ~0 

then the result is identical with that for the lightly-loaded  infinitely 

bladed free propeller as given in reference 3- 
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APPEKDIX IV 

OUTLIKE OF DESIGN PROCEDURES FOR SHROUDED PROPELLERS 

by 

Walter Castles^ Jr. and Robin B. Gray 

The design of an optimum shrouded propeller follows closely the 

design of the optimum free propeller as given in reference 3 except 

that the effect of the shroud must he taken into account.  In the 

following outline, it is assumed that the propeller is lightly loaded, 

that the wake vortex system has reached its ultimate configuration at 

the shroud trailing edge, and that the flight velocity, propeller 

angular velocity, number of blades, and the shroud trailing edge dia- 

meter are known. 

I.  Calculation of Total Power Coefficient 

Calculate the total power coefficient, /C^ 

_   Shaft power available 

II.  Determination of•Parameter, W 

Find vv by a trial and error solution of 

CDT-O 

f^*   cp  = eMv^J + w)^ ^ ~^) (iZ-z) 

by assuming several values of vv ; calculating A     for each W   ;   read- 

ing K  and 3^  from the charts for the proper number of blades and 

the calculated A       ;   and substituting these values into equation 337-ä 

to calculate /C 
PT Plot these results versus v^ .  The desired 

vv is read off the resulting curve at the point where the curve inter- 

sects the  /C»    value determined from equation H--1 .  (Note:  It 

is of course assumed that the charts of X-  versus A      and ^7  versus 

A are available for the given number of blades. Actually the deter- 

mination of the necessary charts would require an extension of the exist- 

ing work to cover a range of AS    and numbers of blades.)  The value of vv 
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should "be checked "by redetermining *   ,    ^    ,    y*.      and Inserting these 

values into equation ±Z~2-. 

III.  Determination of Shroud Mean Camber Surface   

A«  A compatible shroud must now be designed.  As mentioned in the 

previous appendices^ the flow field about the shroud is unsteady 

with respect to the shroud because of the presence of the propeller 

having a finite number of blades.  In order to obtain a shroud 

design, the actual wake system will be replaced with an idealized 

wake which will yield a steady flow field approximately equal-to 

the time average flow of the actual unsteady field.  For purposes 

of the outline; it is assumed that the wake boundary sheet is 

uniform in strength, being composed of vortex ring filaments. 

(Actually the inner helical vortex sheet could also be approxi- 

mated by a number of uniform, coaxial vortex cylinders but for 

the purposes of this outline, its effects will be neglected.) 

The shroud design will thus be based on the'mean or average 

velocity field.  The mean axial velocity in the wake may be 

found by considering the physical interpretation of the mass 

coefficient K .  As pointed out in reference 3, the propeller 

imparts the full interference velocity id/ to a column of air 

whose cross section is H ^ .  Another interpretation is obtained 

by considering X- to be the ratio of the mean rearward velocity 

A^ taken over the entire wake cross section to the apparent 

rearward displacement velocity W   .  Therefore 

B.  Instead of considering the idealized wake boundary to be a uniform 

cylinder of vorticity, it will be more convenient to replace it 

with its equivalent:  a uniform distribution of sinks over the 

area enclosed by the shroud trailing edge.  The required unit sink 

strength of this distribution is determined from the vortex sheet 

strength of the assumed uniform wake boundary cylinder of vorticity. 

The sheet strength, itself, is equal to the change In the axial 

velocity component across the sheet.  In this Idealized case, the 

sheet strength per unit length V is equal to '"^V since there 
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are no disturbance velocities outside of the assumed vortex cylinder. 

Thus the required unit sink strength Is 

vw 2. 
AT. *    =    ±  KW (IE-4) 

The average total quantity or volume of flow per unit time expressed 

In terms of the total stream function "j"   Is 

+ M VV1 p (JZ-5) 

At the shroud trailing edge, the volume of flow due to the free stream 

and the uniform distribution of sinks is 

% * %  = (V~+i^)p (IF-O 

so that the shroud must supply the remainder, 

± -   -k^p     =   -jr ^^ F Cu-i) 

Co     The shroud mean camber surface may now he determined as follows: 

(1) Compute Jy        for the field from the equation 

'00 

(2) Compute i^y    for the uniform sink strength distribution from 

the following equations for a number of calculating points 

( Y» 5 S ) making use of values of j        given in Table YJ  of 

reference 6.  For computation purposes the field is divided 

into two regions, that part outside of the wake and that part 

within the wake, as the calculation of  xw  will depend on 

the location of the calculating point in addition to its co- 

ordinates ,  It is also noted that the flow is axially symmetric 

so that the stream lines need only be determined in a radial 

plane. 
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(a) For points in the flow ahead, of the shroud trailing edge location 

■■' 

%   =   ^^C-fw (JZ-1) 

(b) For points in the flow field downstream of the shroud trailing 

edge and outside the wake 

(c) For points in the flow field downstream of the shroud trailing 

edge and inside the wake 

(3)  If the shroud has a center body^ the stream function for the singu- 

larity distribution describing its shape may be determined by various 

readily available methods as in Reference 7-  In most cases a simple 

source-sink distribution may be sufficiently accurate. 

(k)    Assume a length for the shroud and, in addition, assume a bound vor- 

tex strength distribution to be placed along the shroud mean camber 

line.  The only initial requirement on this bound vortex distribution 

is that it be equal to the assumed wake boundary sheet strength at 

the shroud trailing edge so that the flow will be tangent to the 

shroud mean camber line at this point, i,.e,, there will be no discon- 

tinuity in streamline slope at the trailing edge.  Linear variations 

in the distribution are sufficiently accurate for this analysis. 

Further approximate this bound vortex sheet distribution with a num- 

ber of finite strength vortices whose strengths are proportional to 

the area under the curve as shown in Figure IV-1. 
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Figure IV-1.  Vortex pattern used in shroud design. 
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Then 

r  =   hi 

^ 

> (IT-12) 

J 
These finite vortices are placed for the first Iteration on the surface 

of a right circular cylinder whose radius is equal to the radius of the 

wake«  The nondlmenslonal stream function "xC   at point  (Y* 5 2-)  for 

a vortex ring at point y"/0)    for the assumed geometry may he read from 

Table 3 of reference 6 or from a plot of Table 3 where the ■* -coordinate 

of this paper corresponds to the /-coordinate of the table,. 

I<       PIT  J-c air 

where ^ 
(->') 

Ciz-15) 

is identical with •*■: of the table, 

The value of "k" which satisfies the volume flow through the trailing 

edge dl^k area may be found from the relation 

"ft    - |^T «nSI      T.E. 

or from equation   fS'l     and  3Z-I3 

(£S.-\H) 

(jY-/r) 

(5) For the same calculating points v; i)      used in section C-l, 

C-2,   and C-3 compute the contribution to the total stream 

function of the shroud vortex sheet by the following relation 

± 
<rt9) «2) 

CDT-'O 

(Note:  The vortex rings should "be located in the midplanes 

of the calculating points as shown in figure Ä-1 .) 
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(6) Find Y^   for all the calculating points by adding the contribu- 

tions from sections C-l, C-2, C-3^ and C-5.  From a cross-'plot 

determine the line along which "x^. = r^ .  This line is the 

new position of the shroud mean camber surface.  If the shape 

is undesirable from a physical or common sense viewpoint, i.e. 

results in such a large expansion angle that the adverse 

pressure gradient forces flow separation, or results in a 

reflex camber surface, the assumed bound vortex strength must 

be adjusted.  The location of the mean camber surface may be 

displaced radially at a given longitudinal position by in- 

creasing the local bound vortex strength for the next itera- 

tion, or vice versa.  It should be noted that the shroud 

thickness distribution may account for all of the allowable 

trailing edge expansion angle.  If the shroud mean camber 

surface has too much curvature, the shroud must be lengthened 

and vice versa. 

, (7) For the next Iteration, the shroud bound vortex rings are 

moved to the surface determined in section C-6 and the process 

is repeated from section C-h  until a satisfactory mean camber 

surface is established. 

IV.  Shroud Thickness Distribution 

The following method appears to yield a reasonable shroud thickness 

distribution without an unreasonable amount of work. 

A. Construct a reasonable inner contour using elements of existing 

airfoil sections being careful to match slopes and radii of curvature 

insofar as possible where different airfoil sections are joined. 

B. Equidistant on either side of and very close to the mean camber surface 

determined in section 5,  place a pair of vortex rings of equal strength 

but opposite sign as shown in figure IV-2.  The location of these 

vortices must be well within the thickness distribution.  Using the 

stream function data from table 3 reference 6, determine the strength 

of the vortex rings which will locally, i.e. in the plane of the 

rings, move the x^   streamline radially inward to the assumed inner 

shroud contour. 
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Outer contour 

Typical vortex ring pair 
which determine shroud 
outer contour 

Trailing edge 

Figure IV-2.  Location of vortex rings for determination of 
outer shroud contour 

C.  A corresponding outer point may now be determined in the plane of 

the ring pair by adding the stream "function due to the ring pair 

to the existing values of the stream function outside of the mean 

camber surface.  The desired point is obtained at that radius where 

i  again is equal to TT       .  It is noted that this method is 

approximate and does not furnish a solution for the shroud pressure 

distribution.  The outer contour is found by connecting, a sufficient 

number of points so determined with a smooth curve. 

V.  Propeller Design 

A. Determine the induced axial inflow velocity distribution/^ at the 

propeller plane due to the various assumed singularity distributions. 

This may be found from the stream functions previously determined or 

from the appropriate tables of reference 6,  From this fictitious 

axial induced inflow distribution /^> substract 'S ^z   - 2 M w 

which represents the contribution due to a uniform cylinder which 

extends from the propeller plane downstream to infinity.  In the 

real case the wake boundary vortex system which is formed by the 
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vortex filaments shed at the shroud trailing edge and was replaced 

by the uniform cylinder must he continued within the shroud to 

where it is joined to the blade bound vortices at the blade tips 

as described in Appendix I.  The assumed cylindrical wake boundary 

vortex system extension was considered to be a part of the shroud 

bound vortex system in section 111-C-h  and hence its effect must- 

be removed and the effect of the actual helical system must now 

be added.._ The induced velocity_at the blade axis of this „aemi- 

infinite helical wake is approximately half that of the doubly 

infinite wake.  Therefore the axial component at the propeller 

blade axis is approximately T ^ CtrX   f       and the tangential 

since the component is approximately  if ^ ^^ f„ "^ fp 

total induced velocity is nearly normal to the sheet. 

From the curves of KOv  versus ^  for various numbers of 

blades and wake geometric pitches, the particular blade bound 

vortex strength may be found from 

I» = 2 7r (V'oo-h^W 
KM (IT- n) 

From the Kutta-Joukowski theorem 

^ =  f n = +pvx r ^ (W-18) 

where   " local lift per unit span 

/Cj local section lift coefficient 

/C local blade chord 

At any particular blade section the total relative velocity Y    is 
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so  that 

rw = ^ o ^ ^ 
Defining  a solidity     c^ where 

(ir- zo) 

a>   = 
b /C 

2 TT y 
(ir-zi) 

the following is ohtained 

cr^:. ■=. 
^ 

£ W (X + vv) K (/) 
2 TJk 

si^tar+^w^fy^f-hfy + -Lwt**1^ v^-i^^i 
(IT- 22) 

E. 

For a given ^C(  distribution across the blade span, calculate the 

chord distribution using the  "^^g   determined from equation IZ'-^, 

Then the choice of the /C^        and corresponding airfoil section is 

up to the designer, but in general, the  ^j   should be the design 

/Cj  of the section.  Note also that strictly speaking, the chord 

line is a section of a helix and the thickness distribution should 

be laid out with respect to this helical line. 

From the two-dimensional airfoil data for the sections chosen in 

D above plot the profile drag coefficient /C,     versus A  .  The 

contribution of the drag force to the thrust and power may be 

determined by graphical integration of the following integrals. 

/S ' d 
'Ob 

(IST-2 3) 

^ 
zf'mftj^^i (te-zy) 
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where  (Cj   increment In thrust coefficient due to profile drag 
a 

iCj,        Increment in power coefficient due to profile drag 

and  r  is determined from equation ^F_ ''' 

VI.  Propulsive Efficiency 

A.  An estimate of the shroud skin friction drag may he ohtained "by 

considering the velocity on the outer shroud contour to he free 

stream and that on the inner contour to he 'ob + ^   so that 

for an average skin friction drag coefficient  ,/C, 
'•r 

C. = ^ 
ir[vjsa + 0U^25A] 

J_ K" (üT- zs) 

where c. 
So 

s. 

shroud drag coefficient 

outer wetted surface 

inner wetted surface 

The net thrust coefficient on the complete system is 

The power input is 

^ -^  - C2 (jr-2 6) 

^ = ^p+ ^ + ct 

The propulsive efficiency is 

(jT-z-)) 

n A (IT- 26) 

It Is to he noted that the total thrust coefficient includes that 

contributed hy "both the shroud and the propeller so that the 

integral of the axial component of the resultant force on the 

"blade elements will not in general he equal to the total thrust 

less shroud skin friction drag as ohtained in equation Jr-2fc , 
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